
R E P O R T : U S I N G D S B D I N P R A C T I C E :
I S I T P I E C E O F C H E R I - C A K E ?
M AY S A R A A L H I N D I , J O S E P H H A L L E T T A N D
B E N J A M I N S H R E E V E

M AY 4 , 2 0 2 3

This report documents work to date on the ESRC Digital Security
by Design Social Science Hub+ Connecting Capabilities grant exploring
the usability of current DSbD platforms. The grant commissioned
a study looking at the usability of CHERI’s APIs, with an aim to
identifying what issues developers may face when portinng their
software to CHERI’s architectures—in particular developers who may
not have ever encountered CHERI before. Within we describe:

• The study design for our experiment,

• Observations having run the experiment with 9 participants,

• Suggested improvements to CHERI’s programming environment,

We find preliminary signs that digital security by design architec-
tures may be falling into the same usability traps existing systems
fell into. Namely that the developers struggle to work with code
when the systems do not match their mental models and when the
documentation isn’t tailored to their needs.

Study design

Our study is designed around observing developers as they carry out
two programming tasks, each taking an hour:

1. Porting an application to CHERI,

2. Reviewing pull requests containing changes related to CHERI.

Whilst carrying out theses tasks, participants were asked to nar-
rate their thought processes and reasoning. A transcription of the
narration is analysed using grounded theory1 specifically looking for 1 Christine Mattley, Anselm Strauss, and

Juliet Corbin. Grounded theory in practice.
Contemporary Sociology, 28(4):489, Jul
1999

moments where participants mental models seemed confused and
other usability smells2—signs that developers are struggling with a

2 Nikhil Patnaik, Joseph Hallett, and Awais
Rashid. Usability smells: An analysis of
developers’ struggle with crypto libraries.
In Heather Richter Lipford, editor, Fifteenth
Symposium on Usable Privacy and Security,
SOUPS 2019, Santa Clara, CA, USA,
August 11-13, 2019. USENIX Association,
2019

programming task.
The two tasks were performed in a random order to minimize

learning effects. Prior to starting either task participants were asked
to describe what a capability is? At the end of the study they were
asked the same question again to look for a learning effect from
working with CHERI for a short period of time. Developers had



report: using dsbd in practice: is it piece of cheri-cake? 2

access to Google and any other documentation they felt they needed
throughout the task.

Participant Recruitment

We recruited developers with experience in C programming. The
participants had various backgrounds, some of them were students
and the others were recruited from industry and academia.

Prior to the study, participants were provided with two technical
reports introducing them to CHERI’s architecture: An Introduction
to CHERI3 and CHERI C/C++ Programming Guide4. Following that, 3 Robert N. M. Watson, Simon W. Moore,

Peter Sewell, and Peter G. Neumann. An In-
troduction to CHERI. Number 941. University
of Cambridge Computer Laboratory, 2019
4 Robert N. M. Watson, Alexander Richard-
son, Brooks Davis, John Baldwin, David
Chisnall, Jessica Clarke, Nathaniel Filardo,
Simon W. Moore, Edward Napierala, Peter
Sewell, and Peter G. Neumann. CHERI
C/C++ programming guide. Technical Report
947, University of Cambridge Computer
Laboratory, 2020

we asked the participants to take a short quiz and describe what
a capability was. To ensure that participants had actually read the
documentation only those who knew—even incorrectly—what a
capability was were allowed to continue. Four participants were
rejected in this manner.

Porting an application to CHERI

Developers were given a simple C application and were asked to port
it to CHERI BSD and harden it using the CHERI capability model.
The given program is C program that writes to a file and output a
file content to the standard output—a version of the classic UNIX cat

program similar to the one in CHERI’s own examples. In addition
to the source code developers were given a compiler script to allow
them to build it (and to record what warnings and errors they en-
countered) and a QEMU-based virtual machine running CHERI BSD.

Compiling the program produces two capability-related warnings;
shown in Figure 1. In order for developers to resolve these issues
and successfully port the program to run using the CHERI capability
model, they have to change few lines of code and ensure that point-
ers and integers are not treated as synonymous, as they can be in
traditional CPU architectures but not under CHERI.

This task aimed to explore how developers reacted in the face of
CHERI specific programming errors and warnings; whether they
understood what they meant and how they related to the underlying
architecture and whether they could recall information from CHERI’s
to documentation to correctly fix the code.

Reviewing pull requests

In this task, developers had to review 4 merge requests made to port
programs to CHERI. Reviewing pull requests is a daily task for many
software engineers, and is occasionally a job in its own right: the
so-called merge master. The job of the merge master is to review and



report: using dsbd in practice: is it piece of cheri-cake? 3

warning: binary expression on capability

types ’uintptr_t’ (aka ’unsigned __intcap’)

and ’uintptr_t’; it is not clear which

should be used as the source of provenance;

currently provenance is inherited from the

left-hand side [-Wcheri-provenance]

return (offset + (uintptr_t)buffer);

~~~~~~ ^ ~~~~~~~~~~~~~~~~~

warning: cast from provenance-free integer

type to pointer type will give pointer that

can not be referenced

[-Wcheri-capability-misuse]

FILE *fp = (FILE *)file;

^

Figure 1: Warnings after com-
pling the program to capability
mode.

test small changes made by individual developers before their code
can be integrated with a project. Sometimes these changes are new
features but often they are changes required to address known bugs.

The participants were asked to assume the role of a merge master
and to answer the following questions for each pull request:

• Why this change has been made?

• Does this change provide a security benefit, and if so what benefit
does it provide?

• Would they accept this merge request or not?

Three out of the four merge requests were taken from code changes
made to port programs from FreeBSD to CHERI BSD. The fourth
code change includes a function that calculates the pointer size in
way that is not compatible with the CHERI architecture. Example of
the code changes are shown in merge requsts 2, 3, 4 and 5. Whilst
three of the changes (Figures 2, 3, 4) were taken from the porting
work of CHERI BSD, Figure 5 was created from an example of a typ-
ical programming error with CHERI—assuming that pointer size
matches CPU word size: but a CHERI pointer is twice the CPU word
size to include the additional capability information.

Each of the merge requests covers different aspects of changes
needed to port programs to CHERI model; including: pointers as
an integer, pointers provenance, C coding styles and pointer size
calculation.

The point of this task was to explore how developers understood
the changes required to port applications to CHERI. Whilst the port-
ing task focussed on whether the developers could recall and im-
plement the changes; this task focussed on whether they could un-
derstand and descriminate good code from bad and understand the
reasons why a change would have been made. Whilst we were not



report: using dsbd in practice: is it piece of cheri-cake? 4

specifically interested in whether the changes were safe to merge, in-
stead more interested in the developer’s perceived rationale for why
they were safe to merge: the first three were and the last one wasn’t.

- #define PTR_WIDTH ((int)(sizeof(void *) * 2 + 2))

+ #define PTR_WIDTH ((int)(sizeof(vaddr_t) * 2 + 2))
Figure 2: Part of the kldstat

port

- ipsstp->iss_table = (void *)deadlist[18].n_value;

- ipsstp->iss_list = (void *)deadlist[17].n_value;

+ ipsstp->iss_table = (void *)(uintptr_t)deadlist[18].n_value;

+ ipsstp->iss_list = (void *)(uintptr_t)deadlist[17].n_value;

ipsstp->iss_tcptab = ipstcptab;

Figure 3: Part of the ipfstat

port

-int _arcfour_crypt(buf, len, desp)

- char *buf;

- int len;

- struct desparams *desp;

+int _arcfour_crypt(char *buf, int len, struct desparams *desp)

Figure 4: Part of the crypt

server port

+static int get_pointer_size_in_bits(){

+ // size in bytes

+ int size = sizeof(void*);

+ // check if pointer size is 32 bit or 64 bits

+ if(size*8==32){

+ printf("%s","This program supports 32 bit machines");

+ return 32;

+ }else{

+ printf("%s","This program supports 64 bits machines");

+ return 64;

+ }

+}

+

int main(void) {

- int pointer_size = 32;

+ int pointer_size = get_pointer_size_in_bits();

Figure 5: Change assuming
that pointer size accurately
describes the word size of the
machine.



report: using dsbd in practice: is it piece of cheri-cake? 5

Results

The participation statistics are shown in Table 1. The study was run
with 9 people, and a further 4 people were rejected at the pre-study
task5 5 Having been given the CHERI documen-

tation to read, they still could not say—even
incorrectly—what a capability was.

Total participants 9
Participants rejected at pre-study task 4

Porting task
Fixed first warning 9/9
Fixed second warning 6/9

Pull request task
Correctly merged first patch 3/9
Correctly merged second patch 4/9
Correctly merged third patch 6/9
Correctly rejected fourth patch 7/9

Table 1: Participation figures.

Once the sessions were completed, transcripts and recordings
were analysed using an open coding approach to pull out interesting
points and realisations that the participants demonstrated. Satura-
tion was reached after 5 sessions, and 4 sessions are still yet to be
coded6. The codes were then assigned to one of the four usability

6 But will be imminently and described in
subsequent publications.

whiff ’s identified by Patnaik et al.7 to highlight the issues developers

7 Nikhil Patnaik, Joseph Hallett, and Awais
Rashid. Usability smells: An analysis of
developers’ struggle with crypto libraries. In
Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), pages 245–257,
2019

were struggling with.

Sleuthing. Developer has issues with
documentation or its clarity.

Confusion. Developer is unsure how to
apply core programming concepts

Post-Mortem. Developer is trying to figure
out what went wrong.

Doesn’t play well. Build, compatibility or
performance issues.

Table 2: Patnaik et al.’s us-
ability whiffs: high-level code
smells for usability issues with
cryptography libraries.

In addition to Patnaik’s four usability whiffs (Table 2), we have
also added a fifth whiff that emerged from our analysis: floundering.
We believe this fifth whiff was not covered in Patnaik et al.’s original
paper and captures when developers are attempting to fix a problem
by trying to stumble into a solution without any clear plan, approach
or understanding what is actually going on.

Porting task

Whilst all 9 of the developers managed to resolve the first warning,
only 6 managed to resolve the second and port the application. When
attempting to fix the warnings, developers displayed signs that they
were confused, trying to relate CHERI concepts to their own mental
models and trying to understand the abstractions.

In addition developers also demonstrated a new whiff—floundering—
by attempting to fix the issues through trial and error or by swapping
parts of the code around without understanding why that might
fix something. Some attempted to diagnose the issues in the code
without actually reading what the code was and trying to under-
stand it. Some tried to solve the warnings by changing all pointers
types in the code. Others attempted to search for the error messages
in the documentation, and online to see if someone could tell them
what the individual errors actually meant. This particular new whiff
is worrying because unlike the confusion whiff which suggests that
developers are struggling to align their own mental models with
CHERI’s; the floundering whiff suggests that, despite being able to
state what a capability is they do not understand them, or have any
idea of how to work with them in practice. Instead they flounder at
the code trying things that might work just in case they can make the
errors go away.



report: using dsbd in practice: is it piece of cheri-cake? 6

Task Code Usability Whiff

First warning Because offset is different pointer
First warning Can be solved by changing all types to non cap types
First warning Casted the whole line to void pointer
First warning Casted the whole return line to intptr
First warning Change offset from int to int pointer
First warning Changed the data type to make buffer source of provenance Floundering
First warning Developer swapped sides of variables to solve first warning Floundering
First warning First warning might not be an issue Confusion
First warning Gave example of how CHERI solves buffer overflow Confusion
First warning Looked at the definition of provenance Sleuthing
First warning Noticed that there is a default case when getting capability source Post-mortem
First warning Solved without looking at docs
First warning Thought that int pointers do not carry capability Confusion
First warning To solve ambiguous cap case, we have to change one of the pointers Confusion

Second warning Changed a lot of unnecessary things Floundering
Second warning Changed many types and kept running the program to check Confusion
Second warning Developer unsure about the need to change all the way through Confusion
Second warning Developer didn’t run the program and just worked based on warnings Doesn’t play well
Second warning Developer figured the need to change in other parts to solve the issue Post-mortem
Second warning Developer tried to run the program after second warning was gone Floundering
Second warning Error is happening because its trying to use an address the pointer won’t protect Confusion
Second warning Error is happening because long type can not maintain provenance Confusion
Second warning Not sure if warning is CHERI related Sleuthing
Second warning Second warning is the actual issue Confusion
Second warning Traced the execution of the code to find the issue Post-mortem
Second warning Tried to use malloc to store the string to solve the issue Floundering
Second warning Tried to use signed integer instead of unsigned to fix the issue Floundering
Second warning Started with the second warning
Second warning Trial and error Floundering
Second warning Tried to run the program to check if warning causing errors Floundering
Second warning Warnings are clear

Overall Changes in the wrong place
Overall Changes led to a new warning
Overall Changes to wrong data type
Overall Compile the code without reading it Floundering
Overall Decided to read the code after feeling stuck Post-mortem
Overall Developer gave up and moved on Floundering
Overall Developer not sure if changes will fix the code Floundering
Overall Developer solved warning by copying and pasting without understanding Floundering
Overall Did not run the program to check if warnings are affecting runtime Floundering
Overall Getting pointer size in CHERI is different in normal C Confusion
Overall Made changes based on common sense C knowledge
Overall Looked at man pages to understand what syscalls return Floundering
Overall Not sure which warning is causing the error Floundering
Overall Search the documentation for the error message Floundering
Overall Searched online for the error Floundering

Table 3: Codes used when
analysing porting task tran-
scripts



report: using dsbd in practice: is it piece of cheri-cake? 7

Pull request task

Task Code Usability Whiff

PR1 Can not confirm if it is a necessary change Floundering
PR1 Confused how CHERI handles size of pointers Confusion
PR1 It has security implications since the bounds might be too large or small
PR1 It is not clear from docs how to solve this Sleuthing
PR1 It should be alignof instead of sizeof
PR1 Made to increase compatibility with CHERI
PR1 Mixed between vaddr and a pointer
PR1 Not sure about the sizes of vaddr and pointer
PR1 Unclear if it has security implications

PR2 Added security since its CHERI complaint
PR2 Change could cause an error Floundering
PR2 Change made so it can be de-referenced in the future
PR2 Change made to convert code to CHERI
PR2 Change made to preserve capabilities
PR2 Change made to silence a warning somewhere Floundering
PR2 Confused about security implications Floundering
PR2 It does not make sense to cast int to void

PR3 It does have anything obvious with CHERI Confusion
PR3 Made because CHERI requires being explicit with types
PR3 Made because more CHERI compatible
PR3 Not sure if it is CHERI related Confusion
PR3 Not sure what it is doing Floundering

PR4 It has security implications because bad size will lead to bad calculations
PR4 It is made to make code CHERI compatible on other platforms
PR4 It might be unnecessary
PR4 Noticed that CHERI pointers are larger in size
PR4 Will have security implications since it sets incorrect bounds
PR4 Reject because it does not consider CHERI pointers size
PR4 Reject because of strange implementation Confusion

Table 4: Codes used when
analysing pull-request task
transcripts

When completeing the pull request task the developers were asked
to decide whether a patch should be merged or not and whether, the
merging of the patch had security implications. When completing
this task our codebook seems to indicate less usability smells and
instead more general confusion about the CHERI platform itself.
Whilst there is evidence for floundering and confusion; most of the
codes seem to represent developers being unsure. Rather than ques-
tioning whether they should use something or how to use it (signs of the
confusion whiff), they instead seemed cautious and unclear.

Success rate with the task was mixed; with developers mostly in-
correctly deciding against pulling the first and second patches and
correctly pulling and rejecting the third and fourth—but not in over-
whelmingly confident numbers. Given that patch three just rewrote
some pre-ANSI standard C8, and the caution in the codes identified: 8 Last seen in the 1970s, yet mentioned in

the CHERI documentation so incorporated;
K&R style C allows function arguments to
be untyped in the usual argument parens
and then optionally typed before the opening
block. As untyped parameters are implictly
an int until typed in K&R C they cannot be
used as a capability later.

perhaps the developers just knew they didn’t know enough about
CHERI to make a definitive appraisal of the patches?



report: using dsbd in practice: is it piece of cheri-cake? 8

Overall success

Code Usability Whiff

Developers have correct understanding of the issue but not able to fix it Confusion
Need to understand CHERI model better Confusion
Not sure about implications of changing types Confusion
Not sure about the difference between void pointer and vaddr Confusion
Not sure how CHERI handles size of void pointer Confusion
Not sure how pointer width will change the behaviour Confusion
Not sure if void types will increase in size with CHERI Confusion
Not sure what’s needed to be changed and what not Confusion
Not sure what’s the correct pointer size Confusion
Not sure if problem is solved if warning was gone Floundering
Not sure why error is there but warning is gone Floundering
Hard to search the documentation Sleuthing
It is not easy to read the docs Sleuthing
Misunderstood docs Sleuthing
Not knowing where to look for in the documentation Sleuthing
There is a lot of information in the docs Sleuthing
Trouble understanding examples in doc without context Sleuthing
Understands the theory but needs more practical examples Sleuthing

Table 5: Codes used when cap-
turing developers struggles and
comments

Throughout both tasks we noted when developers seemed to be
struggling and why and captured their comments as codes (Table 5).
The reasons varied between participants, but all seemed to display
smells of sleuthing, and confusion. These smells indicate when de-
velopers are struggling to work with available documentation and
either failing to find examples or understand what they are being
told (sleuthing); and when they are unsure how to approach a prob-
lem and cannot reason about how to use something or what they
need to do (confusion). In addition we also saw signs of floundering
where developers were unsure whether a problem was solved just be-
cause a compiler warning had gone, or why an error persisted when
the warning had gone. This seemed to add to developers struggles to
successfully reason about their code.

Discussion

Something’s fishy. . .

During several sessions we noticed the following when developers
worked with CHERI code (Figure 6): developers would be presented
with an error message or code they didn’t immediately fully under-
stand and would start searching the documentation for the literal
pattern. When they found something similar enough they’d attempt
to use the documentation to fix the error, but when their fix failed to
work or left questions in their mind they became slightly panicked
and would attempt solutions somewhat at random. Since this de-



report: using dsbd in practice: is it piece of cheri-cake? 9

scription doesn’t fall neatly into Patnaik et al.’s code smells9 we have 9 It’s sort of like confusion but rather than
questioning what something does or how to
do it, developers flounder around in search
of something to give them a hint.

created a new smell to capture it: floundering.
As two developers put it:

“I might have to do a bit of trial and error here. . . ”

“I’m charging around just hoping to change things.”

Figure 6: Floundering process
as developers worked with the
CHERI code, initially Googling
for errors and then resorting to
panic as the fixes didn’t work.

Random solutions seemed to include switching arrays for mal-
loc’d pointers and back and forth and making everything pointers
(because CHERI is understood as having a different pointer architec-
ture) and making random changes in the hope that something might
fix the error or new errors in place. Alternatively they would blame
either the code for being fundamentally incompatible with CHERI, or
themselves for not being clever enough to understand it.

Despite the small sample size, our study has highlighted that there
are usability issues with CHERI lurking. Several of our participants
were competent C programmers and several had significant expe-
rience with CHERI itself; and yet the floundering smell was seen
repeatedly throughout the study reducing developers to guessing
and hoping that there programs were correct and secure. Not digital
security by design; and a sign that CHERI needs better explanation
for most developers.



report: using dsbd in practice: is it piece of cheri-cake? 10

Code Category

Better way to get pointer size Compiler
CHERI compilers should help the developer spot these
problems

Compiler

Compilers should specifically say what types need to be
fixed and changed

Compiler

Compilers should tell developers that other parts need to
be changed

Compiler

Docs should show more examples that has context to
them

Docs

Less writing and more simple examples Docs
Need for a cheat sheet Docs
Need for an easy conceptual model Docs
Need for less verbose documentation Docs
Simpler documentation of needed changes Docs
Tutorial with a simple program then introduce changes
to it

Docs

Table 6: Codes from sessions
where participants suggested
improvements to make their
task easier.

Scope for improvement

When completing the tasks participants sometimes remarked on the
usability challenges they were facing and what they felt could be
done to improve them. Based on their suggestions we created codes
to capture their suggestions. Broadly speaking these usability issues
related to either the compiler or the documentation (Table 6).

The compiler. Programmers are well known to ignore warnings10 10 Peter Leo Gorski, Yasemin Acar, Luigi
Lo Iacono, and Sascha Fahl. Listen to
developers! A participatory design study on
security warnings for cryptographic APIs. In
Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems,
pages 1–13, 2020

yet when dealing with a new architecture this behavior can be espe-
cially dangerous. Several of our participants seemed confused about
whether it was safe to ignore CHERI-specific warnings, and yet in
every case it wasn’t. The warnings were identifying the underlying
issue, and yet the participants assumed they could ignore them:

“I need to double check whether this warning is relevant or not.”

Interviewer: “So do you think these warnings generally will affect the
programme if you run it?”
Participant: “Oh, um. . . well, no, because they’re warnings.”

“I don’t think it will affect the programme running, because it’s only a
warning.”

“Well, yeah, I mean given it’s a warning, it may not be a change that I
need to do anything about.”

Given that the warnings the developers faced were leading to
the errors their programs encountered, perhaps it needs to be made
more explicit to developers that these are issues that need fixing and
should be treated as errors instead?

Additionally, since the compiler knows what it is compiling, addi-
tional warnings about particularly concepts which are likely to catch



report: using dsbd in practice: is it piece of cheri-cake? 11

developers out when working with CHERI C (for example, surround-
ing the use of capabilities) could help developer spot issues ahead
of time. Using empirically validated techniques to help ensure that
compiler output is readable11 may also help. 11 Paul Denny, James Prather, Brett A

Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B Powell.
On designing programming error messages
for novices: Readability and its constituent
factors. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing
Systems, pages 1–15, 2021

Furthermore, one of the issues that developers struggled with the
most is that in some cases, the warnings will be gone, but the issue
will still be there, and this happens because the developers made the
correct change in one place, but that change is needed in other places
as well. The compiler should be fixed to keep the warning until the
correct change is implemented in all the needed places in the code.

The documentation. CHERI is a new—and changing—system, expect-
ing the documentation to be polished at this early stage is perhaps
unfair, but it is clearly an area programmers struggle with:

“It’s not fully clear what to look for. I have looked for these two types
in here and I can’t really spot like the main reason why it would
change.”

“It’s just very poor documentation, so it hasn’t really got a basis actu-
ally, ‘This is how you start,’ there’s no simple hello word example of
how you can just use the pointers and other things.”

“Just taking the documentation as it is and taking the recommendation,
that didn’t work unfortunately.”

“I think the thing lacked any sort of tutorial. It jumped straight into
fairly hardcore descriptions of it all, and there’s no warm up.”

Lack of tutorials, lack of CHERI expertise, and small errors led
to programmers becoming frustrated. Other participants bemoaned
how broad the documentation was and just wanted simpler examples
and cheat sheets: providing more focused documentation for devel-
opers who just want to work with CHERI without understanding its
full features and security architecture. Whilst we cannot expect all
the tutorial material to be there before widespread adoption of digital
security by design architectures—the calls for it will only get louder.

Barrier to entry

Finally, our study was carried out by a fairly limited number of par-
ticipants: just 9. Despite a relatively high amount of reimbursement
for partipants12 we found recruitment extremely difficult. Despite ap- 12 We offered £50 vouchers. A quick survey

of the student noticeboard suggests that £5–
10 is the normal rate for study participation.

proaching hundreds of students directly (the researcher was allowed
to announce the study at the start of classes where students had an
appropriate background, and approach TAs in labs), and many po-
tential participants seeming initially keen; very few eventually took
part, and a further 4 were rejected for not being able to demonstrate
they’d read the introduction to CHERI.



report: using dsbd in practice: is it piece of cheri-cake? 12

Whilst the difficulties with recruiting developers are well known13, 13 Nikhil Patnaik, Joseph Hallett, Mohammad
Tahaei, and Awais Rashid. If you build
it, will they come? Developer recruitment
for security studies. In Recruitment of
Participants for Empirical SE Studies
(RoPES), 2022

in this particular study the problem seems to have been exasperated
by the CHERI documentation. Informally, a few participants told
us that they found the Introduction to CHERI and CHERI C/C++ Pro-
gramming Guide intimidating and long. Participants reported them
as being difficult to read. Enthusiasm for the study dropped and so
participant numbers and rejection numbers seem to have suffered.

Kind Code Usability Whiff

Praise Found same warning Sleuthing
Praise Found similar examples Sleuthing
Praise Has good examples that compare traditional C to CHERI Sleuthing
Praise It explains things well Sleuthing
Praise It goes into details Sleuthing

Criticism Contradiction about no needed changes but a big API Post-Mortem
Criticism Error not found in documentation Sleuthing
Criticism Examples do not show context of the changes Confusion
Criticism Following the documentation does not help in fixing the bug Post-Mortem
Criticism Its in PDF format
Criticism No info about the need to do changes in other places not only the warning place Sleuthing
Criticism No information how to write CHERI compatible code Sleuthing
Criticism No simple guide or basics Sleuthing
Criticism No tutorial Sleuthing
Criticism There is no easy guide to code changes Sleuthing
Criticism Void pointers are not mentioned in the documentation Sleuthing

Table 7: Codes used to capture
participants thoughts when
talking about the documenta-
tion.

When speaking about the documentation, whilst participants
praised its examples and readability—helping to counter the sleuthing
whiff (Table 7)—participants found it didn’t cover every eventuality
and error, and didn’t help them to debug issues when things went
wrong (adding to the post-mortem and sleuthing whiffs).

Speaking to CHERI developers it seems that whilst the documen-
tation exists, the normal place most developers actually go for help is
the CHERI developer chat channel; and that the official documenta-
tion is regarded as more of an academic reference. Whilst this may
work acceptably when the number of CHERI boards is small; as
adoption of digital security by design grows there is a need for more
traditional reference documentation and guides as the number of
developers, the languages they speak, and their questions grow.

Conclusion

As one developer put it:

“CHERI stops your code from violating memory and security, but it
doesn’t stop the programmer from creating bad code.”

The security possibilities of digital security by design offer a great
opportunity to improve the safety of all software and hardware at



report: using dsbd in practice: is it piece of cheri-cake? 13

a fundamental level. But early results from our study suggest that
we are at risk of falling into the same usability pitfalls that plague
conventional hardware: namely, poor documentation, and confu-
sion about warnings and errors. These are all well known usability
smells14 for programmers, but to see them appearing with CHERI 14 Nikhil Patnaik, Joseph Hallett, and Awais

Rashid. Usability smells: An analysis of
developers’ struggle with crypto libraries. In
Fifteenth Symposium on Usable Privacy and
Security (SOUPS 2019), pages 245–257,
2019

hardware suggests that there are still improvements to be made;
which we will confirm with further study.

No matter what clever hardware we have, we cannot ignore the
human element and the programmers building on these systems. It
doesn’t matter if we have secure by design hardware if we cannot
build the software for it.

Key Recommendations

Whilst the CHERI architecture and software development environ-
ment is still very new; increased availability of Morello and awareness
of DSbD means that CHERI is finally getting into the hands of de-
velopers. As CHERI matures, more usable documentation and sup-
port will be needed to ensure that developers find working with the
platform a pleasure rather than a chore. To that end, we make the
following recommendations:

Support developers when changes are required. The CHERI architec-
ture is different to conventional computers that most developers
have grown up using. Changes aren’t often required but when they
are make sure that developers can find what they need to change
and understand why with the minimum of fuss. Don’t assume that
developers will have read the documentation or gone to the CHERI-
project’s Slack channel: make it easy to find.

Future Work

Our study has been run with
a limited number of develop-
ers, and we still have a limited
number of transcripts still to
analyse (though our codebook
has reached saturation). We
plan to publish full results doc-
umenting our findings and the
novel usability smell later at a
conference venue.

It’s about more than just technical reports. People learn differently.
While technical reports and formal documentation might be right for
some, for other developers it can be off putting. If developers can’t
find answers in the forms that work for them (be that Q&A style
posts, tutorials, or videos) then they’ll flounder instead of turning to
the forms that don’t work for them.

Digital Security by Design will ensure that sensible protections
are built into every new technology from the get go; but if we want
to ensure that these platforms are adopted quickly and the protec-
tions are utilised as effectively as possible then the usability of Digital
Security by Design cannot be an afterthought.


	Study design
	Results
	Discussion
	Conclusion
	Key Recommendations
	Future Work

